Biomagnification of radiocesium in a marine piscivorous fish

نویسندگان

  • Xiguang Zhao
  • Wen-Xiong Wang
  • K. N. Yu
  • Paul K. S. Lam
چکیده

Radiocesium is the only trace element apart from Hg that may be potentially biomagnified at the top of the marine planktonic food chain. We quantified the assimilation efficiency from ingested prey, uptake rate from the aqueous phase, and efflux rate of radiocesium in a marine piscivorus fish (the mangrove snapper Lutjanus argentimaculatus). Aqueous 137Cs exhibited an approximately linear uptake pattern over a 4 d exposure period, and was immediately transported to the muscles. The calculated uptake rate constant (0.00145 l g–1 d–1) was independent of the ambient Cs concentration. Salinity variation appeared to have no influence on the 137Cs influx within the range of 20 to 30 psu, but the influx rate increased when the salinity was further reduced to 15 psu. The assimilation efficiency in fish ingesting different prey (copepods, Artemia, clam tissues, and herbivorous fish), measured by a pulse-chase feeding technique, ranged between 78 and 95%. The efflux rate constant of 137Cs in fishes following uptake from the dissolved and dietary phases ranged between 0.020 and 0.023 d–1. The higher efflux rate in marine fishes compared to those in freshwater fishes may have been due to the ionic regulation in marine teleosts (e.g., high excretion rate to counteract the high ambient K+ concentration). Using a simple kinetic model, we show that the dietary uptake of 137Cs plays a dominant role when the concentration factors of 137Cs in prey range between 50 and 100. At a lower value for the concentration factor (10), 137Cs bioaccumulation in fish is dominated by uptake from the aqueous phase. The predicted trophic transfer factor (concentration in the predator to concentration in the prey) in the predatory fish ranges between 1 and 4.4 (with a median value of 2), and is consistent with the field measurements of trophic transfer factor of 137Cs in the piscivorous fishes in both marine and freshwater systems. Thus, the biomagnification of 137Cs in marine predatory fishes is largely caused by the extremely high 137Cs assimilation from ingested prey, despite the relatively high efflux rate of 137Cs compared to those measured in freshwater fishes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heavy Metal Ions on Titanium Dioxide Nano-Particle: Biomagnification in an Experimental Aquatic Food Chain

Heavy metal metals are non-biodegradable, have a remarkable ability to transfer through food chains and are potentially toxic for organisms.They are introduced tomarine environment via different anthropogenic sources. In this study, the ability of titanium dioxide nano-particle in transfer of Cr, Cu, Pb and Se metal through an aquatic food chain involving Ceratium tripos as the phytoplankton Da...

متن کامل

A survey of dioxin and furan compounds in sediments of Florida Panhandle Bay systems.

A sediment quality survey was conducted in the Florida Panhandle (Panhandle) over a period of 10 years (1992 to 2001). The survey examined which dioxin and furan compounds may be present in sediments of the bay systems, their locations, and concentrations. The U.S. Fish and Wildlife Service (FWS) collected and analyzed 29 sediment samples from 6 bay systems across the Panhandle. Risk associated...

متن کامل

Environmental contaminants in freshwater fish and their risk to piscivorous wildlife based on a national monitoring program.

Organochlorine chemical residues and elemental concentrations were measured in piscivorous and benthivorous fish at 111 sites from large U.S. river basins. Potential contaminant sources such as urban and agricultural runoff, industrial discharges, mine drainage, and irrigation varied among the sampling sites. Our objectives were to provide summary statistics for chemical contaminants and to det...

متن کامل

Trophic transfer of seven trace metals in a four-step marine food chain

There is increasing recognition of the importance of dietary pathways in determining metal body burdens in marine organisms. With a simple kinetic model that requires information about the ingestion rate of an animal and the assimilation efficiency (AE) and efflux rate constant (ke) of a metal following dietary exposure, it is possible to quantitatively predict the trophic transfer and biomagni...

متن کامل

Mercury Biomagnification between Two Trophic Levels of a Grazing Food Chain (Plankton and Planktivorous Fish) in a Fresh Water Ecosystem

Background: The Present study was carried out to track and calculate Biomagnification Factor (BMF) of total mercury (T-Hg) between two different trophic levels (i.e., plankton and a planktivorous fish) in a fresh water grazing food chain. Methods: Experimental organisms were planktonic biomass and silver carp (Hypophthalmichthys molitrix) as a planktivorous fish. Silver carp samples were obt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001